PARTNERS' Choice niversal HVAC Parts & Accessories #### REPLACEMENT PARTS LIST MG1E SERIES DIRECT VENT, FORCED AIR, GAS FURNACES # CSA Unit 23 - Forced Air Add-On Devices # Chapter 1 Air Filters and Cleaners for Forced-Air Furnaces A forced-air furnace cannot operate without air filtration. The gas technician/fitter must be familiar with the various types of filters available, be able to install them correctly, and instruct customers on their maintenance to ensure safe, efficient operation of the gas furnace. It is important for the gas technician/fitter to understand the advantages and disadvantages of media and electrostatic filters and electronic air cleaners, so they can help customers choose the air filtration system best suited to their needs. #### Created # Learning Objectives # Describe Air Cleaning Equipment Describe three types of air cleaning equipment (media filters, electrostatic filters, and electronic air cleaners) that can be used with forced-air furnaces ### **Understand Media Filters** Describe the function, installation, and maintenance of media filters # Understand Electrostatic Filters Describe the function, installation, and maintenance of electrostatic filters ### **Understand Electronic Air Cleaners** Describe the function, installation, and maintenance of electronic air cleaners ### **Understand UV Air Purifiers** Describe the function and installation of ultraviolet air purifiers ## **Key Terminology** | Term | Abbreviation (Symbol) | Definition | |---|-----------------------|--| | Electronic air cleaner | EAC | Air cleaner that uses electrostatic charge to remove
and collect particulate contaminants from the
circulated air system | | Electrostatic precipitator | ESP | Another name for the electronic air cleaner (EAC) that uses induced electrostatic charge | | High-efficiency particulate air (arrestance) filter | HEPA | Type of air filter | | Media filter | | Filter that physically removes particles from the air stream | | Minimum efficiency reporting value | MERV | Numerical value given to furnace filters to identify filtering ability | # Red Seal Alignment This chapter aligns with several Red Seal blocks and tasks related to gas technician training, including: ### Occupational Common Skills - Task 1: Performs safety-related functions - Task 2: Maintains and uses tools and equipment - Task 3: Plans and prepares for installation, service and maintenance # Systems Supply Venting and Air - Task 7: Installs venting - Task 8: Installs air supply system - Task 9: Installs draft control systems ### Servicing Gas-fired Systems - Task 18: Maintains gas-fired systems - Task 19: Repairs gas-fired systems - Task 20: Decommissions gas-fired systems ## Types of Air Filtration Systems ### **Media Filters** Sometimes called mechanical filters, they are the simplest form of air filtration. They are made from such media as fibreglass and positioned in the air stream. Air is forced through the filter and particles removed. The filter media can be reusable or disposable. Media filters of high, low, and medium efficiency are available. ### **Electrostatic Air Filters** These are media filters made from a material that generates a static charge in response to air flow. The static charge attracts and holds more particles than media filters to the medium. ### Electronic Air Cleaners (EAC) They use an electrostatic charge to remove and collect particulate contaminants from the circulated air system. An EAC uses an external power source to generate the charge that attracts particles to charged plates, rather than a media filter, to collect them. ### **UV Air Purifier** Use UV light to reduce biological contaminants, chemical, and odours. UV is not a filtration method, but can be incorporated into filtration systems. ### **Understanding MERV Ratings** #### What is MERV? The minimum efficiency reporting value (MERV) is a numerical value given to furnace filters to identify the filtering ability. The MERV rating system is now an international industry standard that helps determine a furnace filter's ability to capture and hold dirt and dust in specific size ranges. ### **Rating Scale** MERV ratings range from 1-20. The higher the MERV rating, the greater the filtering capability. Measurements are in microns. ### **Applications** High-efficiency particulate air (HEPA), MERV 17–20, or high-efficiency particulate arrestance filters, which remove a very high percentage of airborne contaminants, are often specified for various commercial, industrial, and institutional applications. #### Residential Use A MERV rating between eight and 11 is adequate for most homes. To be safe, it is best to check if the furnace manufacturer has a maximum MERV rating for the model of furnace being used. # Pressure Drop Considerations ### What is Pressure Drop? The pressure drop that the filter causes should undergo assessment for suitability with fan units prior to use to ensure maintenance of duct static pressures. As filters become more efficient (higher MERV ratings), they typically create more resistance to airflow, which can affect system performance. ### Impact on System Too much pressure drop can cause: - Reduced airflow through the system - Decreased heating and cooling efficiency - Increased energy consumption - Potential damage to the furnace components ### **Finding Balance** The ideal filter provides adequate filtration while maintaining proper airflow through the system. Always consult manufacturer specifications for maximum allowable pressure drop in the system. ### Sources of Indoor Air Particles ### **Combustion Sources** Dust generated by smoking, burning candles, cooking, doing laundry, etc. ### **Biological Sources** Hair and skin flakes from humans or pets ### **Outdoor Sources** Particles from the outside air that come into the home with infiltrating air ### **Household Dust** Dust on floors or other surfaces that is disturbed by activity in the house # Health Impacts of Airborne Particles Although an occupant would probably like to keep visible dust out of a home, the main health risk comes from unseen/unsafe particles which include tobacco smoke, spores, bacteria, and viruses. # Choosing the Right Air Filtration System ### Air Quality Requirements Consider the degree of air cleanliness required for the specific application ### **Dust Conditions** Evaluate the amount and type of dust in the air to be filtered ### **Airflow Resistance** Consider the operating resistance to air flow (pressure drop) ### **Space Constraints** Assess the space available for filtration equipment ### **Cost Factors** Evaluate initial costs, ongoing maintenance costs, and operating costs ### System Lifespan Consider the predicted life and efficiency of the system #### MERV AIR FILTER RATING MERV 8 MERV 13 MERV 11 Lint Household dust Household dust Household dust Pollen Pollen **Mold Spores Mold Spores Dust Mites Dust Mites Dust Mites** Smoke Smoke Smog Smog Pet Dander Pet Dander Cough/Sneeze Cough/Sneeze Bacteria Virus ### Relative Costs of Air Filter Types | Filter | Maintenance and capital costs, per year, over 15 years (\$) | Amount of clean air produced (litres/second) | Cost of clean air
per year
(\$/liters/second) | |----------------|---|--|---| | 25 mm pleated | 48 | 17 | 3.36 | | 25 mm premium | 100 | 97 | 1.13 | | Charged media | 43 | 44 | 1.25 | | 100 mm pleated | 100 | 60 | 1.71 | | HEPA bypass | 240 | 175 | 2.03 | | ESP | 67 | 298 | 0.26 | Source: Canada Mortgage and Housing Corporation (CMHC) ### Types of Media Filters ### Hammock Filters Located on a frame or hammock that surrounds the fan in the forced-air furnace If a forced-air furnace is intended to be used with a hammock filter, the filter holder will be factory installed ### Slab Filters Consist of layers of filter material, usually fibreglass, held in place by a cardboard frame The fibres are treated with oil or a similar adhesive Most slab filters are designed for one-time use and must be discarded when they are dirty ### **Pleated Filters** Represent the most popular type of filter choice available today Come in a variety of sizes and thicknesses Paper pleating increases the filter surface and improves performance air duct is typically round tubes. The plastic coating is durable and provides insulation to maintain the temperature of the HVAC system as it is set. This type of ductwork is easier to install than rigid air ducts. If you are low on space, it is the best choice for installing this air duct. Due to flexible structure of the ducts, they can be bent and fixed accordingly, even in tight spaces. However, the airflow may become restricted due to the flexible ducts' bends, resulting in the HVAC system's inefficiency. ### 2. Rigid Ductwork As the name suggests, the other category of air duct is rigid ductwork with hard, enduring, and stiff structure. This type of air duct can be rectangular or cylindrical shaped. You can customize the vents according to the structure required. They cannot be bent like flexible ductwork. But they are least likely to be punctured or torn. #### 2.1. Sheet Metal Ducts These types of air ducts are made up of aluminum or galvanized steel #### 2.2. Fiberglass Ducts Built with fibergla strands & held resin. The fibergla is effective #### 2.3. Fiberboard Ducts Made up of compressed fiber glass & an external layer of foil is attached around the ### Hammock Filter ### Description Hammock filters are located on a frame or hammock that surrounds the fan in the forced-air furnace. The filter material is typically disposable and requires periodic replacement. ### Installation If a forced-air furnace is
intended to be used with a hammock filter, the filter holder will be factory installed. The filter material is secured to the frame with screws or clips that can be loosened for replacement. ### Maintenance Regular inspection and replacement of the filter material is necessary. One side of the media is usually coated with oil to enhance particle collection. This coated side should be opposite the blower. ### Slab and Pleated Filters Figure 1-2 Slab filter Figure 1-3 Pleated media filter ### Advantages and disadvantages | Advantages | | Disadvantages | | |------------|-----------------------------------|--|--| | • | Low initial cost and upkeep | Low efficiency on normal atmospheric dust | | | | Efficient for the removal of lint | Decreased air flow as particles collect in | | ### Filter Rack Installation ### Locate the Installation Position Identify the location of the racks. The side of the furnace cabinet will likely have embossed angles indicating the location. ### Cut the Return Opening Cut the return opening using the angles as guides. ### Mount the Filter Rack Mount the filter rack over the opening. ### Complete Ductwork Proceed with the ductwork installation. Holding the filter in position requires the installation of a filter rack. The filter rack is usually located between the furnace casing and the returnair plenum. ### Impact of Filters on Air Flow ### Resistance to Air Flow All media filters, whether mechanical or electrostatic, add resistance to air flow. ### **Thickness Considerations** The thickness of the filter and the specifications for the furnace must match. Adding extra filters to the filter chamber to improve indoor air quality can seriously impede furnace operation. ### **Primary Purpose** The main purpose of the furnace inline filter is to protect the blower fan and heat exchanger from the dust, hair, and other particles the return duct pulls in. ### Operational Issues As a filter fills with particles, the air volume flowing through the filter decreases. Restrictions in air flow can cause problems in heating cycles, causing the furnace to switch off on the high limit control and seriously limit the furnace's ability to heat the house. # Partial Bypass Air HEPA Systems # Figure 1-5 HEPA bypass filter ### Why Use Bypass Systems? HEPA filters have a tight fabric and should not be used as inline furnace filters as they are too restrictive and could stall the HVAC fan. By using the bypass approach even if the HEPA unit was clogged, all of the air could just bypass the HEPA unit and the HVAC fan system would not be subject to higher static pressures. ### How They Work HEPA filtration systems can be stand-alone or installed as a partial bypass attached to the return side of a forced air HVAC system. The bypass ducting diverts some of the return air through the HEPA unit. Filtered air is then rerouted back into the return air and continues through the system for heating/cooling. # **HEPA Filtration Stages** ### Pre-filter An inexpensive filter to remove larger particulates from the air. This is important to prolong the life of the HEPA filter. ### **HEPA Filter** Removes 99.97% of particulates 0.3 micron and larger. ### Carbon Filter For removing chemicals and odours from the air. # Importance of Regular Filter Maintenance ### Performance Issues Dirty filters are the most common cause of inadequate heating or cooling performance. They create temperature changes that are detrimental to the operation of the furnace. ### System Damage In systems with add-on air conditioning, decreased operational air flow may cause liquid refrigerant to return to the compressor during the running cycle since there is insufficient air flow to vaporize the refrigerant. This condition is called floodback and may damage the compressor. ### **Energy Costs** Dirty filters cost money since excessive accumulation can block the air flow, forcing the unit to work harder and use more energy. ### Maintenance Schedule Filter cleaning must be on a regular and frequent basis — more frequently than service calls are required. ### Customer Education on Filter Maintenance - Locate the Filter It is the responsibility of the gas technician/fitter to point out the filter's location to the user. - 3 Explain Replacement Procedure The gas technician/fitter must be sure the customer understands the installation procedure for new filters. - Establish Maintenance Schedule The technician should establish a filter change or cleaning schedule with the customer. - Identify Correct Filter Type Ensure the customer knows what size and type of filter is required for their system. Caution! Never operate a forced-air furnace without a filter installed. Dust and lint will build up on the furnace's internal parts, resulting in loss of efficiency, equipment damage, and possible fire. ### Filter Replacement Schedule A dirty filter can cause high temperature rise across a furnace because of the restrictive nature of the air flow. This may continue to be unknown to the homeowner until such time as the outdoor temperature drops and they suddenly realize that the furnace is not heating to the set temperature. # Down-flow Furnace Filter Replacement ### Remove Filter Box Door Remove the two screws holding the filter box door in place and remove the filter box door assembly. ### Remove Old Filters Pull the filters out of the box, flexing them as necessary to get them past the flue pipe. ### **Insert New Filters** Insert the replacement filters. Make sure they are properly positioned in retaining clips on the back panel. ### **Reinstall Door** Re-install the filter box door assembly and secure it with the two screws. Down-flow furnaces contain two or four disposable slab air filters. They are located in a filter cabinet on top of the furnace. ### Down-flow Furnace Filter Location #### **Filter Cabinet Position** In down-flow or low boy furnaces, the filter cabinet is typically located on top of the furnace. This position allows the filters to capture particles before the air enters the furnace's internal components. ### Filter Arrangement The filters are arranged to cover the entire return air opening. Multiple filters may be used side by side to ensure complete coverage of the return air path. #### **Access Considerations** The filter cabinet is designed with a removable door for easy access during maintenance. Ensure there is adequate clearance above the furnace for filter removal and replacement. ## Up-flow Furnace Filter Replacement from right side ### **Disconnect Power** Disconnect power to the unit before removing blower door. ### Remove Access Door Remove the blower access door. ### **Loosen Retaining Wire** Loosen the filter retaining wire at the front of the unit. ### Replace Filter When replacing the cleaned filter, make sure the filter retaining wire is secured in place at both the front and back of the unit. ### **Restore Power** Replace the blower access door and restore the power. ### **Up-flow Furnace Filter Positions** ### Filter Location Options Up-flow furnaces may contain a cleanable, reusable hammock filter within the furnace blower compartment in a bottom or side (left or right) return air inlet. ### **Bottom Return** When the return air enters from the bottom of the furnace, the filter is typically installed horizontally below the blower compartment. ### Side Return With side return configurations, the filter is installed vertically in the return air opening on either the left or right side of the furnace cabinet. ### **External Filter Frames** ### Location Filters may be located outside the furnace in a filter frame. These frames are typically installed in the return air duct near the furnace. ### Design The filters in a filter frame should slide out easily for replacement (if disposable) or cleaning (if reusable). Filter frames are designed to provide a secure fit for the filter while allowing easy access for maintenance. ### Advantages External filter frames offer easier access for maintenance compared to filters located inside the furnace cabinet. They can often accommodate larger or thicker filters than might fit inside the furnace. ### Hammock Filter Replacement ### Prepare the Area Before you remove the filter unit, place a floor covering material on the floor. #### Remove the Filter Slide the entire filter out of the unit. Loosen the screws that hold the media to the rack. Remove the media. ### Dispose of Old Media Wrap the old media in newspaper and discard it. ### Prepare New Media Unroll new media and cut it to the correct size. Attach the media to the rack. #### Reinstall Filter Slide the filter back into the blower compartment. One side of the media is usually coated with oil to enhance particle collection. This coated side should be opposite the blower. (In an up-flow unit, the coated side will face the return air duct work.) ### Reusable Slab Filter Maintenance #### Remove Filter Remove the filter from the unit. Remove the media from the filter frame. #### Clean Media Wash or vacuum the media. Use hot water and detergent for washing. ### **Dry Media** Squeeze water from the media and return it to the frame. ### **Apply Filter Spray** Coat the downstream or leaving side of the media with a tackified filter spray to enhance particle collection. The filter spray must be applied before the filter is repositioned in the furnace. #### Reinstall Filter Reposition the filter in the unit. Important: Do not re-oil the filter in place. If re-oiling is done while the filter is in position, oil will be sprayed on the blower assembly and heat exchange surfaces. ### Disposable Slab Filter Replacement ### Remove Old Filter Remove the filter from the unit. ### Dispose of Filter Discard old filter with regular household garbage. ### **Install New Filter** Place new filter in unit. The new filter must be of the same size. If there are arrows on the filter frame, place them to match the system air
flow. Caution! Disposable filters must be discarded, not reused. Reused filters will not remove particles effectively. Do not vacuum disposable filters. Vacuuming will remove mineral oils along with the dirt, and the filters will no longer work. ### **Electrostatic Filters: Introduction** #### What Are Electrostatic Filters? Electrostatic filters may replace standard media filters if more filtration is necessary. They use a combination of static electricity and filtering media to remove particles from the air. #### Construction The filter media is usually made of layers of nylon or woven polyethylene fibre encased in a frame. In appearance, a filter of this type is similar to a disposable slab filter. #### Maintenance Most electrostatic air filters are washable and reusable. Regular cleaning is necessary to maintain optimal performance. ### How Electrostatic Filters Work ### Airflow As air flows through the filter, it creates friction with the filter material. ### Static Charge Generation In an electrostatic air filter, static electricity is generated as the air stream travels through the filter. ### Particle Attraction The static charge causes dust particles to become electrically charged. These charged particles are then more likely to cling to the filter medium. #### Particle Collection The charged particles adhere to the filter material, removing them from the air stream. # Electrostatic Filter Advantages and Disadvantages ### Advantages - No electricity required - More efficient than media filters without electrostatic charge - Typically washable and reusable - Lower long-term cost compared to disposable filters - Environmentally friendly due to reusability ### Disadvantages - Less efficient than electronic air cleaners - Requires regular washing to maintain effectiveness - Higher initial cost than basic media filters - May lose charge over time, reducing effectiveness - Can create more air resistance than some basic filters ### **Electrostatic Filter Installation** ### Select Proper Size Ensure the electrostatic filter is the correct size for your furnace's filter rack. ### **Check Airflow Direction** Note the airflow direction arrows on the filter frame and install accordingly. ### **Insert Filter** Slide the filter into the filter rack, ensuring it fits securely. ### Secure Filter If the filter rack has clips or fasteners, ensure they are properly engaged to hold the filter in place. Electrostatic filters can typically be installed in the same location as standard media filters, making them an easy upgrade for improved filtration. ### Electrostatic Filter Maintenance Dry # Inspect Check the filter monthly during heating season for dust accumulation Allow filter to dry completely before reinstallation ### Remove Take the filter out of the furnace when it appears dirty ### Clean Wash with warm water and mild detergent to remove trapped particles Regular cleaning is essential to maintain the electrostatic filter's efficiency. Unlike disposable filters, electrostatic filters can be washed and reused many times, providing long-term value. ### **Electronic Air Cleaners: Introduction** # What Are Electronic Air Cleaners? Electronic air cleaners (EACs), also known as electrostatic precipitators (ESPs), are advanced air filtration devices that use an electrostatic charge to remove and collect particulate contaminants from the circulated air system. ### **Key Difference** Unlike electrostatic filters that generate a static charge through air movement, EACs use an external power source to generate the charge that attracts particles to charged plates, rather than a media filter, to collect them. ### **Applications** EACs are suitable for residential and commercial HVAC systems where high-efficiency air filtration is desired. They are particularly beneficial in environments with high levels of airborne particles or for individuals with respiratory sensitivities. ## How Electronic Air Cleaners Work ### Pre-Filtering Air first passes through a pre-filter that captures larger particles ### Ionization Particles pass through an ionization section where they receive an electrical charge ### Collection Charged particles are attracted to collector plates with an opposite charge ### Clean Air Output Cleaned air exits the unit and returns to the living space ### **Electronic Air Cleaner Components** #### Pre-Filter Captures larger particles before they enter the ionizing section Protects the internal components from excessive dust buildup Usually washable and reusable #### **Ionizing Section** Contains charged wires that create an electrical field Imparts an electrical charge to particles passing through Operates at high voltage (typically 6,000-12,000 volts) #### **Collector Plates** Series of parallel plates with alternating charges Attracts and holds the charged particles Made of aluminum or other conductive material #### **Power Supply** Converts household current to the high voltage needed for ionization Includes safety features to prevent electrical hazards May include indicator lights to show operational status # Electronic Air Cleaner Advantages #### **High Efficiency** Can remove up to 95% of airborne particles as small as 0.3 microns #### Cost-Effective Long Term No filter replacement costs, only periodic cleaning required #### Low Air Resistance Creates less restriction to airflow than high-MERV media filters #### **Environmentally Friendly** Reusable components reduce waste compared to disposable filters #### **Health Benefits** Removes allergens, bacteria, and other harmful particles from the air # Electronic Air Cleaner Disadvantages #### Higher Initial Cost More expensive to purchase and install than conventional filters #### **Electricity Required** Needs electrical connection to operate, adding to energy consumption #### Regular Maintenance Requires periodic cleaning of collector plates and pre-filters #### **Ozone Production** Some models may produce small amounts of ozone as a byproduct #### **Potential Noise** May produce crackling sounds if extremely dirty or if arcing occurs ### Electronic Air Cleaner Installation #### **Select Location** Install in the return air duct, typically between the return air drop and the furnace #### Prepare Ductwork Cut and modify ductwork as needed to accommodate the air cleaner cabinet #### **Mount Cabinet** Secure the air cleaner cabinet to the ductwork using sheet metal screws #### **Electrical Connection** Connect to power supply according to manufacturer's instructions and local electrical codes #### **Install Components** Insert pre-filter, ionizing section, and collector plates into the cabinet Always follow the manufacturer's specific installation instructions and ensure compliance with local building and electrical codes. ## Electronic Air Cleaner Maintenance Monthly Inspection Check indicator lights to ensure proper operation Listen for unusual sounds that might indicate problems Regular Cleaning (Every 1-3 Months) Remove and clean pre-filter Remove and clean collector plates and ionizing section **Annual Service** Inspect electrical connections Check for wear on components Verify proper operation of safety features #### Honeywell Note: Click for earlier F50E manual with a parts drawing that shows more replaceable parts ## F50E Duct Mounted Electronic Air Cleaner #### PRODUCT DATA #### APPLICATION The F50E high efficiency electronic air cleaner is mounted in the return air duct of a forced air heating, cooling, or ventilating system. It captures a significant amount of the airborne particles 0.5 microns and larger from the air circulated through it. #### **FEATURES** - Available in two sizes to fit most ducts; adapts to air flow from either side. - Has two cells. - Capacity of 1400 cfm (2380 m³/hr) or 2000 cfm (3400 m³hr), depending on size. - Solid state power supply is self-regulating and maintains peak efficiency over a wide range of cell dirt loading conditions. - Pressure drop is approximately equal to that of a regular fiberglass filter. - Optional W8600E Solid State Performance Indicator monitors air cleaner performance, reminds homeowner when a cell and prefilter wash is past due, and when to check system. - Electronic cells can be washed in most home dishwashers. - Remote mount kit is available for mounting power supply and junction box separately when access space is not available. - Galvanized cabinet protects against rust. - Automatic interlock switch disconnects power and discharges cell when door is opened. - · Test button checks system operation. - Troubleshooting guide mounted inside cell access door. - Permanent wash reminder schedule mounted on top of power supply box. - Prefilter screens protect cells from large dirt particles. #### Contents | Application | - 1 | | |---------------------------|-----|--| | eatures | 1 | | | Specifications | 2 | | | Ordering Information | 2 | | | Planning The Installation | | | | nstallation | | | | Checkout | | | | Service | | | | lectrical Troubleshooting | | | | Parts List | | | | W W LIVE | | | Copyright @ 1998 Honeywell Inc. • All Rights Reserved ## Cleaning Electronic Air Cleaner Components #### **Turn Off Power** Disconnect power to the air cleaner before servicing #### Remove Components Take out pre-filter, ionizing section, and collector plates #### Clean Components Wash in hot, soapy water or run through dishwasher if manufacturer permits Use only recommended cleaning solutions to avoid damage #### **Dry Thoroughly** Allow components to dry completely before reinstallation Moisture can cause electrical arcing and damage #### Reinstall Return components to their proper positions in the cabinet Restore power to the unit ## Ultraviolet Air Purifiers: Introduction #### What Are UV Air Purifiers? Ultraviolet (UV) air purifiers use UV-C light to reduce biological contaminants, chemicals, and odors in the air. UV is not a filtration method but can be incorporated into filtration systems to enhance air
quality. #### How They Work UV-C light damages the DNA and RNA of microorganisms, preventing them from reproducing and effectively neutralizing them. The UV light is typically installed in the ductwork or near the cooling coil where microorganisms are likely to grow. #### **Applications** UV air purifiers are particularly effective against mold, bacteria, viruses, and other biological contaminants. They are often used in conjunction with traditional filters for comprehensive air cleaning. # Types of UV Air Purification Systems #### Coil Sterilization Systems UV lamps installed near the cooling coil to prevent mold and bacteria growth Helps maintain system efficiency by keeping coils clean Operates continuously to prevent biofilm formation #### Air Sterilization Systems UV lamps installed in the ductwork to treat air as it passes through Designed to maximize exposure time of moving air to UV light May include reflective surfaces to increase UV effectiveness #### **Combination Systems** Incorporate both coil and air sterilization functions May include additional filtration components Provide comprehensive air treatment approach ### **UV Air Purifier Installation** **Select Installation Location** Identify optimal placement for maximum effectiveness (typically near cooling coil or in return air duct) **Prepare Mounting Surface** Create access opening if necessary and prepare mounting brackets Install UV Lamp Assembly Mount the UV lamp fixture according to manufacturer's instructions **Connect Electrical Supply** Wire the UV system to appropriate power source following electrical codes **Install Safety Features** Ensure safety switches and warning labels are properly installed Caution: UV light can cause eye and skin damage. Always follow safety precautions during installation and maintenance. ### **UV Air Purifier Maintenance** Regular Lamp Inspection Check UV lamps periodically to ensure they are functioning properly Lamp Replacement Replace UV lamps according to manufacturer's schedule (typically annually) UV lamps continue to emit light but lose effectiveness over time Lamp Cleaning If recommended by manufacturer, clean lamp surfaces to remove dust Always disconnect power before cleaning **System Verification** Periodically verify that safety interlocks and warning systems are functioning # UV Air Purifier Advantages and Disadvantages #### Advantages - Effectively neutralizes biological contaminants - Helps prevent mold growth on cooling coils - Reduces system maintenance by keeping components cleaner - No resistance to airflow - Can help reduce odors #### Disadvantages - Does not remove particles from the air (needs to be used with filters) - Requires periodic lamp replacement - Consumes electricity continuously - Potential safety concerns if improperly installed - Some models may produce small amounts of ozone # Combining Filtration Technologies For optimal indoor air quality, a comprehensive approach combining multiple technologies may be most effective. A basic media filter can remove larger particles, while electronic air cleaning captures smaller particles, and UV purification addresses biological contaminants. This layered approach provides more complete air cleaning than any single technology alone. # Selecting the Right Air Filtration System for Customers #### **Assess Needs** Determine customer's air quality concerns and health requirements #### System Compatibility Ensure selected filtration works with existing HVAC equipment #### **Evaluate Environment** Consider home conditions, pets, allergies, and local air quality #### **Budget Considerations** Balance initial costs with long-term operational expenses # Customer Education on Air Filtration Explain System Operation Ensure customers understand how their air filtration system works Establish Maintenance Schedule Create a clear timeline for filter replacement or cleaning Demonstrate Maintenance Procedures Show customers how to properly maintain their specific system (1) Highlight Warning Signs Teach customers to recognize when their system needs attention # Impact of Dirty Filters on System Performance #### Filter Becomes Clogged Dust and particles accumulate in the filter material #### **Airflow Decreases** Restricted airflow reduces system efficiency #### System Works Harder Blower motor strains to move air through the restriction #### Temperature Issues Furnace may overheat and trigger high-limit switch Air conditioning coils may freeze due to insufficient airflow ## Importance of Proper Filter Sizing #### **Dimensions Matter** Filters must be the exact size specified for the system to ensure proper fit and function. Even small gaps around a filter can allow unfiltered air to bypass the filter, reducing effectiveness. #### **Thickness Considerations** The thickness of the filter affects both filtration capacity and airflow resistance. Thicker filters generally provide better filtration and longer life but may create more resistance. #### System Compatibility Not all systems can accommodate all filter thicknesses. Always check manufacturer specifications for compatible filter dimensions. ### Filter Replacement Best Practices #### **Check Direction** Install filters with the arrow pointing in the direction of airflow (toward the furnace). Incorrect orientation reduces efficiency and can damage the filter. #### Secure Properly Ensure the filter is properly seated in its rack or frame. Use any clips or fasteners provided to hold the filter securely in place. #### Replace, Don't Clean (Disposables) Never attempt to clean disposable filters. Cleaning damages the filter media and reduces effectiveness. #### Follow Schedule Replace filters according to the recommended schedule, even if they don't appear dirty. Many harmful particles are not visible to the naked eye. [Your Company Email] | [Your Company Number] | [Your Company Website] #### **HVAC Maintenance Schedule Outline** Welcome to the HVAC Maintenance Schedule for April 2050. This document outlines the weekly tasks and procedures to ensure your HVAC system operates efficiently throughout the month. Please follow the schedule diligently to maintain optimal performance and longevity of your equipment. | Week | Maintenance Tasks | |----------------------|---| | Week 1 (April 1–7) | Inspect and clean air filters Check thermostat settings and functionality Inspect electrical connections and tighten as necessary | | Week 2 (April 8-14) | Examine heating and cooling coils for dust and debris Lubricate moving parts Inspect the condensate drain lines | | Week 3 (April 15-21) | Check the level of refrigerant and recharge if necessary Inspect and clean the blower assembly Review and update the HVAC system software (if applicable) | | Week 4 (April 22-30) | Inspect ducts for any leaks or blockages Clean the exterior HVAC unit Test system efficiency and document performance metrics | #### Notes: - 1. Ensure all maintenance activities are performed by qualified personnel. - 2. Always power off the HVAC system before performing any maintenance tasks. - 3. Record all maintenance activities and findings for future reference and compliance. - 4. Use manufacturer-recommended parts and tools for repairs and replacements. Schedule Templates @ Template.net ## Seasonal Filter Maintenance Considerations ## Indoor Air Quality Considerations 99.97% 8-11 **HEPA Filtration Efficiency** Percentage of particles 0.3 microns or larger removed by HEPA filters Recommended MERV Rating Optimal MERV range for most residential applications 1-3 Monthly Filter Changes Typical frequency for checking and replacing filters during peak seasons Indoor air quality is a critical consideration for health and comfort. The EPA estimates that indoor air can be 2-5 times more polluted than outdoor air, making effective filtration an essential component of a healthy home environment. ## Filter Efficiency vs. Airflow Balance # Common Air Filtration Problems and Solutions | Problem | Possible Causes | Solutions | |--------------------|---|---| | Reduced Airflow | Clogged filter, filter too restrictive | Replace filter, consider lower MERV rating | | Short Filter Life | High dust levels, incorrect size | More frequent changes, address dust sources | | Bypass Air | Poor filter fit, damaged rack | Ensure proper sizing, repair filter rack | | System Cycling Off | High limit tripping due to restricted airflow | Replace filter, check for other blockages | | Coil Freezing | Insufficient airflow across cooling coil | Replace filter, ensure proper airflow | # Air Filter Environmental Impact #### Disposable Filters Disposable filters contribute to landfill waste, with millions discarded annually. The environmental impact includes: - Manufacturing resources (paper, cardboard, synthetic materials) - Transportation emissions - Landfill space - Non-biodegradable components #### Reusable Filters Reusable filters offer environmental benefits but have their own considerations: - Reduced waste generation - Water and detergent usage for cleaning - Energy for manufacturing durable materials - Longer lifespan (typically 3-5 years) #### **Energy Considerations** The energy efficiency impact of filters is also important: - Clean filters reduce HVAC energy consumption - Proper filtration extends equipment life - Balanced approach saves resources long-term ### **Electrostatic Filter Installation** #### **Installation Locations** Because electrostatic filters are a form of slab filter, they are installed in the same position and way as slab filters, either: - inside the plenum; or - in a filter frame. Consult the manufacturer's specifications for installation instructions. Drange installation of electrostatic filters is essential
for entired performance. Always # Electrostatic Filter Cleaning Instructions #### Vacuuming If the filter is lightly soiled, vacuuming will be sufficient to remove the particles. Vacuum first the upstream side of the filter, followed by the downstream side. You can also vacuum some electrostatic filters in place. Consult the manufacturer's instructions for specifics. #### Flushing with clean water From time-to-time, flush the filter thoroughly with clean water using either a hose or shower nozzle. Drying the filter before returning it to position is not necessary, but you should shake excess water from it to prevent it from dripping into the ductwork. #### Washing with detergent If the filter is greasy, wash it with detergent, possibly in a bathtub. However, take care not to scratch the tub with the filter frame. Rinse the filter with clear water before you return it. # Electrostatic Filter Maintenance #### Regular Inspection The gas technician/fitter should inspect the electrostatic air filter during the inspection of the furnace and replace damaged filters. #### **Customer Education** Ensure customers understand the cleaning requirements and maintenance schedule for their electrostatic air filter. #### Performance Monitoring Check filter efficiency periodically to ensure it continues to provide adequate air filtration for the system. ### **Electronic Air Cleaners Overview** #### What Are EACs? An electronic air cleaner (EAC) may be free-standing or designed to be installed into central heating and cooling systems. The basic operation is the same. In this chapter, references to EACs are those designed to be installed into the heating and cooling system. ## **Electronic Air Cleaner Components** #### Pre-filter The pre-filter screens large particles before they enter the electrostatic field. This section may be composed of fine wire mesh, expanded aluminum, or foam. The large particles removed by the pre-filter might cause excessive arcing (and excess ozone production) if they could enter the high-voltage section of the air cleaner cell. Note: The pre-filter serves the same purpose as the slab or hammock filters in the furnace blower compartment, so when an EAC is installed, remove any existing slab or hammock filter. #### **Charging Section** The charging section (cell) consists of a band of small-diameter wire filaments or ionizer wires. They are supplied with high DC voltage (between 6 and 25 kV DC) from the power pack. The wires are suspended equidistant between grounded plates. The high voltage on the wires creates an electrostatic field, also called an ionizing field. The positive ions create flow across the airstream. As airborne particles pass through the field, they become positively or negatively charged. #### **Collecting Section** The collector cell contains a series of parallel plates. Alternate plates are charged with a positive direct current voltage of 4 to 10 kV DC. Plates that are not charged are at ground potential. The charged particles passing into this section are attracted to the plates by the electric field on the charges they carry. These capture and hold contaminated particles of the opposite charge. Oils or adhesives on the plates may augment retention. #### **Power Pack** The power pack consists of: a step-up transformer, which increases incoming 120 V AC current to 3000 - 3500 V at the collector cells; and a rectifier circuit (also called a voltage doubler), which converts the previously mentioned current to 7500 -- 8500 V DC at the charging cells. ## Electronic Air Cleaner Operation #### Air Flow Air enters the EAC through the return duct #### Pre-filtering Large particles are captured by the pre-filter #### Charging Particles receive an electrical charge #### Collection Charged particles are attracted to collector plates #### Clean Air Filtered air continues through the HVAC system ## **EAC Control Systems** #### System Switch The air cleaner comes with a manual system switch. #### Air Proving Switch The air proving switch ensures that the EAC is functioning only when the furnace blower is in operation. #### **Indicator Lights** Many EACs include indicator lights to show when the unit is operating and when maintenance is required. ## EAC Advantages and Disadvantages #### Advantages - Unchanging system resistance as particles are collected - Removal of fine particulate matter, such as cigarette smoke and pollen - Collection of particles does not impair system operation - Highly efficient on 5 and and differen #### Disadvantages - Removal of odours of vapours such as tobacco smoke are not removed (To reduce these odours, you may add an activated carbon filter downstream of the EAC to filter out odours) - High initial cost - Production of ozone gas with a noticeable odour created by an electrical arc - More complicated customer-performed maintenance and cleaning than for media filters As a result of some of these disadvantages, EACs are not as popular today as they once were. EACs produce ozone levels in the house air but not greater than the safe concentrations recommended by health guidelines. ### **EAC Installation Locations** #### Return Air Plenum EACs are typically installed in the return air plenum. #### **Near Blower Compartment** They may be installed in the return air duct close to the blower compartment. #### **Between Components** They may be installed between the plenum and the blower. #### **Additional Locations** You can also install air cleaners in the outdoor-air intake ducts of buildings and residences or in the recirculation and bypass air ducts. Always place air cleaners ahead of heating or cooling coils and other air-conditioning equipment in the system to protect other equipment from dust and to increase its efficiency. # Sheet Metal Modifications for EAC Installation #### **Gradual Transitions** If the duct is a different size from the air cleaner cabinet, gradual transitions are recommended to reduce air turbulence and increase efficiency. #### **Expansion Limits** The expansion should be no more than 20 degrees, or 4 inches per running ft (100 mm per 300 linear mm) on each side. #### Air Distribution In the duct adjacent to the unit, install turning vanes to ensure good air distribution across the face of the electronic cells. #### **System Benefits** This will help to keep the blower and evaporator coil clean and ensure the unit functions efficiently. ## **EAC Installation Requirements** #### Complete Filtration EACs must filter the entire return air stream. #### Adequate Clearance EACs must be installed with clearances that match manufacturer's specifications and allow for service access. If necessary, a duct offset can be used to provide space for an EAC. #### **Proper Air Flow** EACs must not exceed acceptable restrictions to air flow. #### **Humidifier Considerations** EACs should be installed upstream from the humidifier, if possible. Moisture from the humidifier will cause mineral and salt buildup in the EAC. If the EAC must be installed downstream from the humidifier, the distance between the two units should be as great as possible. s than mm) ches # Duct Offset for EAC Installation #### Measure Required Space Determine the dimensions needed for the EAC installation. #### **Create Offset Design** Design the duct offset to accommodate the EAC while maintaining proper airflow. #### **Fabricate Transition Pieces** Create the necessary ductwork components for the offset installation. #### Install Offset and EAC Mount the offset ductwork and install the EAC according to manufacturer specifications. # EAC Installation Step 1: Preparation #### **Clean Blower Compartment** Remove as much dust as possible from the heating system before installing the EAC. #### Remove Furnace Filter Remove and discard the furnace filter. #### Vacuum Ductwork Power vacuum the ductwork to remove accumulated dust in an existing home, or construction dust in a new home. #### Clean Fan Blades Clean the furnace fan blades as required. Since the EAC removes particles only from circulating air, it cannot remove dust that has settled in the blower compartment or distribution ducts. ## EAC Installation Step 2: Attach Cabinet to Furnace #### Remove Components Remove and set aside the access door, electronic cell(s), and pre-filters. Note: Electronic cells and ionizing wires are very delicate. You must handle them with caution. The power door requires accurate and secure replacement. #### Align Cabinet Align the cabinet with the return air opening. #### **Create Opening** Create an opening in the furnace to match air cleaner cabinet opening. #### **Install Transition** Install a transition when furnace and air cleaner openings are different sizes. #### Level and Support Be sure the unit is firmly supported and level. Place blocks under the cabinet if necessary. #### **Secure Cabinet** Attach the cabinet securely to the furnace. Either attach the cabinet directly or use a starting collar fitted in the furnace opening. Either drill holes and fasten with sheet metal screws or rivets, or use slip joints. # EAC Installation Step 3: Install Turning Vanes #### When To Install Install turning vanes if the EAC must be located close to a turn in the ductwork. #### Purpose The vanes ensure even air flow over the face of the unit. #### Installation Method Follow manufacturer guidelines for proper installation of turning vanes to optimize airflow. #### Performance Impact Properly installed turning vanes improve EAC efficiency and reduce system resistance. Figure 1-13 Turning vanes distribute air flow evenly ## EAC Installation Steps 4-5: Ductwork and Wiring #### Step 4: Fasten Cabinet to Ductwork Install a transition when the opening on the air cleaner and the opening on the duct are different sizes. #### Step 5: Wiring EACs function only when the blower is operating and air is in motion. When properly installed, the EAC electrically or mechanically interlocks with the furnace or cooling system
blower circuit and can only operate when the furnace blower is energized. #### For an interlock: - Install a sail switch in the return air duct. When the blower is energized, the air movement causes a fin on the sail switch to move, closing a set of electrical contacts to the EAC and energizing it. - 2. Follow all electrical and building codes in conjunction with manufactures instructions. ### Ozone Production in EACs #### **Normal Operation** A properly functioning EAC produces a small amount of ozone, the odour of which may be noticeable. The gas technician/fitter should explain this odour to the building occupants. #### **Excessive Ozone** A strong noticeable odour indicates continuous arcing and brush discharge in the EAC and indicates a need for service. #### **Odor Reduction** An activated carbon filter can reduce the odour of ozone. Install the activated carbon downstream from the air cleaner. #### Safety Note Since some activated charcoal filters are combustible, it is important that particles from the air filter are not able to fall into the EAC. Note: High ozone odours can occur if there is too little air flow through the filter. # Customer Instructions for EAC Maintenance #### Cleaning Frequency EACs require cleaning every one to six months, depending on household conditions. #### **Household Factors** A home with several people and pets, where residents smoke tobacco, and have hobbies such as woodworking, will need frequent EAC cleaning. #### Lower Maintenance Homes A smaller household with no smokers, pets, or individuals with dusty hobbies, will need less frequent EAC cleaning. #### **Professional Service** Since cleaning must be frequent, while other services are rarer, the customer must know how to clean the EAC. Some customers may also be happy to replace broken ionizing wires themselves. A trained gas technician/fitter should do all other servicing. ## Technician Responsibilities for Customer Education #### **Show Power Switch** The gas technician/fitter must show the customer the location of the power switch (and test switch, if the EAC includes one). ### **Explain Maintenance Schedule** Most EACs come with a wash reminder schedule, which should be posted in a convenient place for customer reference. #### **Demonstrate Cleaning** The gas technician/fitter must ensure that the customer knows how to remove and clean filters and cells, according to the manufacturer's instructions for the unit. #### **Explain Indicator Lights** Some EACs have an indicator light that comes on to indicate that the cells are dirty and air cleaning efficiency is diminished. Ideally, the cells should be washed frequently enough that this light never comes on. Caution! Turn off the power to the EAC before cleaning the cells to discharge the electronic cells. Sometimes, it takes a few minutes for the charge on the cells to dissipate. Pressing the test button after the unit is turned off will dissipate the charge to ground. ### Cleaning EAC Cells: Basic Procedure #### Remove Cells Slide cells out of cabinet. Be careful as cells may have sharp edges. #### Wash Cells Wash the cells either by soaking them at a coin-operated do-it-yourself car wash or in an automatic dishwasher. Take care not to damage the ionizing wires, no matter which method is used. Detergent is usually used for cleaning. Follow the manufacturer's specific instructions for cleaning materials. #### **Inspect Cells** After washing, inspect the cells for dirt or residue. Repeat the washing process if necessary. #### Clean Pre-filter Before reassembling the EAC, clean the pre-filter. You may wash the pre-filter screen with detergent, or you may vacuum them, whichever is more convenient. Do not wash the pre-filter in the dishwasher or a car wash. Since the pre-filter contains lint that can become caught in cells, do not soak it at the same time as the cells. #### **Inspect Wires** Before reassembling the EAC inspect the ionizing wires and replace any that are broken. #### Reassemble Reassemble the EAC. If the EAC has a drying unit, engage it. #### **Restore Power** Turn power on at main disconnect. Note: Some EACs will not operate until they are completely dry. Others will operate, but wet cells and pre-filters may cause arcing. If the unit comes with a Check LED, the light may come on when cells and pre-filters are wet in the unit. Wait for two or three hours until the cells and pre-filter are completely dry to avoid these problems. ### Dishwasher Method for Cleaning EAC Cells #### **Check Compatibility** Before washing the cells in the dishwasher, check the dishwasher manual. Some manufacturers of dishwashers do not recommend using them to wash electronic cells. Ψ1 #### **Position Cells** Place cells on the bottom rack with the air flow arrows pointing up, being sure to place in such a way as to allow good water circulation. Do not place anything else in the dishwasher with the cells. 6 #### Add Detergent Use regular dishwashing detergent. #### Run Wash Cycle Run them through a complete wash cycle. Do not allow the dishwasher to run through the dry cycle. The dry cycle will bake on any contaminants that remain on the cells and impair air cleaner efficiency. 0 #### Cool and Drain Allow the cells to cool completely in the dishwasher or wear protective gloves to avoid burns when removing the cells. Hot water may accumulate in the tubs supporting the collector plates. Tip the cells to drain these tubes. #### Clean Wires Wipe the ionizer wires and contact board on the end of the cell gently using a small damp cloth. Q #### Clean Dishwasher If dirt or residue remains in the dishwasher, run the dishwasher again, empty, to clean it. ## Soaking Method for Cleaning EAC Cells #### **Prepare Container** Do not soak cells in a bathtub since their sharp edges can scratch the tub finish. Fill a container large enough to immerse one or both cells with very hot water. #### Add Detergent Dissolve 3/4 cup of regular automatic dishwashing detergent per cell. If the detergent does not dissolve readily or forms a scum on the water, use softened water or try another brand. #### Soak Cells After the detergent is completely dissolved, lower the cell(s) into the container and soak each cell for 15 - 20 minutes. #### Agitate and Remove Lift the cells up and down a few times, then remove them. #### Rinse and Soak Again Rinse the cells with a fine spray and soak again in hot clean water for 5 - 15 minutes. #### Drain Stand the cells upright to drain. ### **Checking and Replacing Ionization Wires** Figure 1-14 Replacing ionization wires Courtesy of Honeywell Limited 0 Inspect Wires The fine tungsten wires in the charging section of the electronic cell are brittle and can easily break or become damaged. Show the customer how to inspect the cell from the upstream side to ensure no wires are broken or out of position. X **Identify Issues** Broken wires can cause visible arcing or sparking. They require replacement. Replacement Parts ### **EAC Maintenance and Service** #### **Customer Maintenance** The customer can clean cells and replacement ionizing wires, but a trained gas technician/fitter must perform other maintenance and service. #### **Basic Maintenance** Before the beginning of the heating and cooling seasons, inspect the solid-state components and ionizing wires of the EAC. The exact procedure for checking the unit will vary depending on the manufacturer, so refer to the manufacturer's instructions. #### **Component Checks** Checking the components at the beginning of the heating and cooling seasons is basic preventive maintenance for the EAC. Checking the components requires a voltmeter or multimeter. #### **Professional Service** Regular professional maintenance ensures optimal performance and extends the life of the EAC. ### **Checking EAC Components** #### **Power Check** Be sure the power from the main disconnect to the EAC is in the ON position. #### Sail Switch Test To check the operation of the sail switch (or electrical blower interlock), energize the furnace blower. If the EAC does not operate, the sail switch may be faulty. #### **Indicator Light Check** Check to see that the voltage indicator light is on. If the light is not on, but the unit operates, the light is faulty. #### **Test Button Check** Push the Test Button on the front of the EAC access door. Pushing the button shorts the hot side of the collector section to ground and should produce one or more loud snapping sounds in the section. This indicates that the EAC is working properly. The test button discharges the cells. #### Power Pack Voltage Check Remove the access door. With the voltmeter or multimeter set to AC, check the voltage to the power pack. It should read 120 V AC. If the power pack is not working, you can replace the solid-state power supply within the power supply box. #### Collecting Section Voltage Check With the voltmeter or multimeter set to DC, check the voltage to the collecting section plates (3000 - 3500 V DC). #### Charging Section Voltage Check With the voltmeter or multimeter set to DC, check the voltage to charging ionization wires. It should read 7500 - 8500 V DC. Caution! EACs operate at high voltage to charge particles. Follow manufacturer's instructions carefully when servicing them to avoid a hazard. ## **EAC Troubleshooting** | If | Then | |---|---| | There is visible arcing or sparking. | Check the cell for short circuits using an ohmmeter. Make sure power to the EAC is off and cells are discharged. Check the resistance between the frame of the cell and the ionizer, and the frame of the cell and the collector contacts. In each case, the resistance should
be infinite. | | A cell is sparking continuously in one place. | The plates need to be repositioned. Consult the manufacturer's instructions for correct positioning of plates. | | The customer complains of an ozone odour. | Make sure the air cleaner shuts off when the furnace blower is not active. Make sure there is adequate air flow through the unit. | ## **UV Air Purifiers Introduction** #### What is UV Light? Ultraviolet (UV) light rays lie in the spectrum of light that is invisible to most humans. UV lights are designed to create a specific wavelength range within the electromagnetic spectrum of UV radiation. The following are the common UV lamps used in air purification systems: - The UVC range is germicidal and is therefore commonly used for air sterilization UVC lamps effectively destroy microorganisms that pass by the bulb, including germs, viruses, bacteria, and fungi (such as mould). - Vacuum UV (VUV) lights can help reduce gaseous contaminants and odours such as volatile organic compounds (VOC). - UVA combined with a catalyst reduce odours and chemicals. UVC light is like looking at the sun. Looking at the blue light can result in significant eye damage and exposure to it can result in skin damage. Ensure no plastic parts or wire insulation are exposed to UV light. ## Figure 1-15 The electromagnetic spectrum ## **UV Light Spectrum** #### UVA (315-400 nm) When combined with a catalyst, UVA light can help reduce odors and chemicals in the air. #### UVB (280-315 nm) This range has limited applications in air purification systems. #### UVC (200-280 nm) The germicidal range that effectively destroys microorganisms including germs, viruses, bacteria, and fungi. #### Vacuum UV (100-200 nm) Can help reduce gaseous contaminants and odors such as volatile organic compounds (VOCs). ## Germicidal UV Lamp #### **Basic Function** The basic UVC lamp device is designed to fit into a wide variety of locations in the supply or return air duct. Installing the device near the cooling coil to reduce mould and bacteria in the coil fins, drain pans, and surrounding surface. Continuous operation of the air handler motor and UVC germicidal lamp allows maximum exposure of airborne contaminants to the UVC light. #### Advantages and Disadvantages | Advantage | Disadvantage | |--|--| | Can destroy micro-organisms,
such as germs, viruses, bacteria,
and fungi (including mould) | No effect on particulates including most allergens | | Helps prevent illness and disease | No effect on chemical fumes, gases, or cigarette smoke | | Does not produce ozone | | ## **UV Air Treatment Systems** #### **Integrated Systems** UV lamps have been incorporated into systems that can both purify and filter the air. These systems can include different filters options including HEPA and charcoal. #### **UV Light Types** UV air treatment systems may use different types of UV lights depending on the type of air treatment being performed. Do not assume that all UV systems have germicidal capabilities. #### **Installation Options** They may be installed to operate as a standalone system, as a partial bypass arrangement or an insert unit, in either case they do not remove the inline HVAC filter necessary to protect then fan. #### **Ozone Production** Some UV lights are designed to produce both UVC and VUV light. A VUV light unit will produce small amount of ozone. This ozone odour may be noticeable. ### **Electrostatic Filter Installation Best Practices** #### **Proper Positioning** Electrostatic filters must be installed in the correct orientation to ensure proper airflow and filtration efficiency. Always check for airflow direction indicators on the filter frame. #### **Secure Mounting** The filter frame must be securely mounted to prevent air bypass around the edges of the filter. Any gaps will significantly reduce filtration effectiveness. #### **Proper Sealing** Use appropriate gaskets or sealing materials to ensure an airtight fit between the filter frame and the ductwork or plenum. This prevents unfiltered air from bypassing the filter. ## Electrostatic Filter Cleaning Frequency ### **Electronic Air Cleaner Components** #### Pre-filter The pre-filter screens large particles before they enter the electrostatic field. This prevents excessive arcing and ozone production in the high-voltage section of the air cleaner cell. ## **MECHANISM** #### **Charging Section** The charging section consists of ionizer wires supplied with high DC voltage that create an electrostatic field. As airborne particles pass through this field, they become positively or negatively charged. #### **Collecting Section** The collector cell contains a series of parallel plates with alternating charges that attract and capture the charged particles as they pass through the section. ## Electronic Air Cleaner Power Supply The power pack is a critical component of the electronic air cleaner system. It converts standard household current into the high-voltage DC current required for the charging and collecting sections. The step-up transformer increases the incoming 120V AC to 3000-3500V, and the rectifier circuit (also called a voltage doubler) further converts this to 7500-8500V DC for the charging cells. ## **EAC Installation Location Considerations** #### **Air Flow Direction** Ensure the EAC is installed with the correct airflow direction as indicated on the unit #### **Duct Transitions** Use gradual transitions when connecting to different sized ductwork ### Clearance Requirements Provide adequate clearance for maintenance access and service #### **Humidifier Placement** Install upstream from humidifiers when possible to prevent mineral buildup ### **EAC Installation Preparation Steps** 1 System Cleaning Remove dust from the entire HVAC system before installation 2 **Ductwork Preparation** Ensure proper transitions and turning vanes are ready 3 **Electrical Planning** Verify power requirements and interlock connections 4 **Component Inspection** Check all EAC components for damage before installation ## **EAC Turning Vane Installation** ## **EAC Electrical Interlock Options** #### Sail Switch A mechanical switch activated by air movement in the duct. When the blower is energized, the air movement causes a fin on the sail switch to move, closing a set of electrical contacts to the EAC and energizing it. #### **Current Sensing Relay** Monitors the current draw of the blower motor and activates the EAC when the blower is running. #### **Pressure Differential Switch** Detects the pressure difference created by the blower operation and closes the circuit to the EAC when sufficient pressure is detected. #### **Direct Wiring** Connects the EAC directly to the blower circuit so that it operates whenever the blower is energized. ## EAC Cleaning Methods Comparison #### Dishwasher Method - Place cells on bottom rack with airflow arrows pointing up - Use regular dishwashing detergent - Run through complete wash cycle (no dry cycle) - Allow cells to cool completely before handling - Wipe ionizer wires and contact board gently - Run empty dishwasher cycle if residue remains ### **Soaking Method** - Use container large enough for complete immersion - Fill with hot water and 3/4 cup dishwashing detergent per cell - Soak cells for 15-20 minutes - Lift cells up and down before removing - Rinse with fine spray - Soak in clean hot water for 5-15 minutes - Stand cells upright to drain Note: Do not soak cells in a bathtub since their sharp edges can scratch the tub finish. If using the dishwasher method, check the dishwasher manual first as some manufacturers do not recommend using them to wash electronic cells. ## Ionizing Wire Replacement Procedure #### Safety First Ensure power to the EAC is completely off and cells are discharged before beginning any work. #### Remove Broken Wire Carefully remove all parts of the broken wire, being careful not to damage the spring connector. #### **Prepare New Wire** Obtain the correct replacement wire with eyelets on both ends. #### Attach First End Hook the eyelet of the new ionization wire over the spring connector on one end of the cell. #### Stretch Wire Hold the opposite eyelet with needlenose pliers and stretch the wire the length of the cell. #### Secure Second End Depress the opposite spring connector and hook the eyelet over it. #### Verify Installation Check that the wire is properly tensioned and securely attached at both ends. ### **EAC Voltage Testing Points** #### **Power Supply Input** With the voltmeter set to AC, check the voltage to the power pack. It should read 120V AC. If no voltage is present, check the power source, interlock, and wiring connections. #### APPLICATION The F50E high efficiency electronic air cleaner is mounted in the return air duct of a forced air heating, cooling, or ventilating system, it captures a significant amount of the airborne particles 0.5 microns and larger from the air - Has two cells. Capacity of 1400 cfm (2380 m³/hr) or 2000 cfm - (3400 m³hr), depending on size. Solid state power supply is self-regulating and maintains peak efficiency over a wide range of cell dirt - loading conditions. Pressure drop is approximately equal to that of a - regular fiberglass filter. Optional W8600E Solid State Performance Indicator monitors air cleaner performance, reminds - homeowner when a cell and prefilter wash is past due, and when to check system. Electronic cells can be washed in most home - Remote mount kit is available for mounting power supply and junction box separately when access - Galvanized cabinet protects against rust. Automatic interlock switch disconnects power and - discharges cell when door is opened. - Test button checks system operation. Troubleshooting guide mounted inside cell access - Permanent wash reminder schedule mounted on top of power supply
box. - Prefilter screens protect cells from large dirt particles #### Collector Section With the voltmeter set to DC, check the voltage to the collecting section plates. It should read 3000-3500V DC. Lower voltage may indicate a problem with the power supply or a short in the collector section. #### **Ionizer Section** With the voltmeter set to DC, check the voltage to the charging ionization wires. It should read 7500-8500V DC. Incorrect voltage may indicate a problem with the power supply or damaged ionizer wires. # Common EAC Problems and Solutions | Problem | Possible Causes | Solutions | |--------------------|--|--| | No power to unit | Blown fuse, tripped
breaker, faulty interlock | Check power source,
replace fuse, reset
breaker, check interlock | | Arcing or sparking | Dirty cells, broken wires,
misaligned plates | Clean cells, replace broken wires, realign plates | | Strong ozone odor | Excessive arcing, inadequate airflow | Clean cells, check for airflow restrictions, verify blower operation | | Poor air cleaning | Dirty cells, low voltage, air bypass | Clean cells, check voltage, seal any gaps around filter | | Indicator light on | Dirty cells, system fault | Clean cells, check system components | ## **UV Light Safety Precautions** #### **Eye Protection** UVC light is like looking at the sun. Looking at the blue light can result in significant eye damage. Always wear appropriate eye protection when working with UV systems. #### **Skin Protection** Exposure to UVC light can result in skin damage similar to severe sunburn. Cover all skin when working with active UV systems. #### **Power Disconnection** Always disconnect power to UV systems before servicing to prevent accidental exposure to UV radiation. #### **Material Protection** Ensure no plastic parts or wire insulation are exposed to UV light as they can degrade over time. # **UV** radiation hazard. Use only with shielding in place Protect eyes & skin from exposure to UV light. ### **UV Air Purifier Applications** #### **Cooling Coil Treatment** Installing UV lamps near the cooling coil helps reduce mold and bacteria growth in the coil fins, drain pans, and surrounding surfaces, improving system efficiency and indoor air quality. #### Return Air Treatment Placing UV systems in the return air duct helps neutralize airborne pathogens before they enter the HVAC system, providing whole-house air purification. #### Standalone Systems Portable or wall-mounted UV air purifiers can provide targeted air treatment in specific rooms or areas without modifying the central HVAC system. ## Types of UV Air Treatment Systems #### **UVC Germicidal Systems** Uses UVC light (200-280 nm) to destroy microorganisms - Effective against bacteria, viruses, and mold - Does not produce ozone - No effect on particulates or chemicals #### **Combination Systems** Integrates UV with other filtration technologies - HEPA filtration for particulates - Activated carbon for odors - UV light for microorganisms ### **VUV Odor Control Systems** Uses Vacuum UV light (100-200 nm) to reduce odors - Helps reduce gaseous contaminants - Effective against volatile organic compounds - Produces small amounts of ozone #### **PCO Systems** Photocatalytic Oxidation combines UVA with a catalyst - Reduces odors and chemicals - Breaks down complex molecules - Minimal ozone production ### HEPA/UV Air Purifier System 8 Air Intake Draws in room air for filtration 78 Pre-filtration Captures large particles \bigcirc **HEPA Filtration** Removes 99.97% of particles 0 **UV Treatment** Neutralizes microorganisms Carbon Filtration Absorbs odors and VOCs ### **UV Light Effectiveness Factors** The effectiveness of UV air purification systems depends on multiple factors working together. The most critical factor is exposure time - microorganisms must be exposed to the UV light long enough for inactivation to occur. Light intensity directly impacts how quickly pathogens are neutralized, while the distance from the UV source affects the intensity reaching the target organisms. Lamp condition deteriorates over time, with most UV lamps requiring replacement every 9-12 months to maintain optimal performance. Finally, air flow rate must be carefully balanced - too fast and organisms won't receive sufficient exposure, too slow and system efficiency decreases. ## UV Lamp Maintenance Requirements #### Monthly Inspection Visually check that UV lamps are operating (blue glow visible through viewport if equipped) #### **Quarterly Cleaning** Gently clean lamp surface with alcohol wipe to remove dust (with power off) #### Semi-Annual Testing Verify UV intensity with appropriate meter if available #### Annual Replacement Replace UV lamps according to manufacturer's schedule (typically 9-12 months) ### Air Filtration Efficiency Comparison ## Integrated Air Quality Solutions #### Particulate Filtration Removes dust, pollen, pet dander, and other airborne particles using mechanical or electronic filtration. #### Microbial Control Neutralizes bacteria, viruses, and mold spores using UV germicidal irradiation technology. #### **Chemical Filtration** Absorbs odors, volatile organic compounds, and gaseous pollutants using activated carbon or other adsorbent media. #### **Humidity Control** Maintains optimal humidity levels to discourage microbial growth and enhance comfort. A comprehensive approach to indoor air quality combines multiple technologies to address different types of air contaminants. While electrostatic filters and electronic air cleaners excel at removing particulates, UV systems target microorganisms, and activated carbon addresses chemical pollutants and odors. When properly integrated, these systems work together to provide complete air purification for residential and commercial environments. # Air Cleaner Installation Checklist # System Assessment Evaluate the existing HVAC system for compatibility with the air cleaner ### Measurements Verify dimensions and clearances for proper installation # **System Cleaning** Clean the existing system components before installation ### **Ductwork Modifications** Make necessary transitions and install turning vanes if required # Air Cleaner Mounting Securely install the air cleaner cabinet according to manufacturer specifications ### **Electrical Connections** Wire the air cleaner with proper interlocks to the blower circuit # **System Testing** Verify proper operation of all components ### **Customer Education** Provide maintenance instructions and documentation Organisation: Template Library Project: Example Template Project Team: Example Team Template ID: DP-PEA-0040 Template Version: 2 Form Version: 2 Form created: Friday, 26 April 2019, 11:11:42 am ### Preventative Maintenance Checklist for HVAC | Automated Form
Number | ☐ Template Library-Example Template Project-Example Team-DP-PEA-0040-0 | | | |-------------------------------------|--|---------------------|--| | Building or Area being
Inspected | Pines Apartment Blocks | | | | Name of
Inspector/Auditor | Dave Hodgson | | | | Date and Time of
Inspection | Friday, 26 April 2019 | | | | | HVAC | | | | | Inspect at least twice a year, with sea | asonal start-up and | d run inspections | | Checkbox | Do screws, latches, gaskets, or missing screws need replacements? | No | | | Checkbox | Recharge P-traps or U-bend water
traps for condensate drain pans | Yes | | | Checkbox | Has a qualified mechanical contractor
provide seasonal PM of chillers and
boilers services? | Yes | | | Checkbox | For cooling towers, disassemble
screens and access panels for
inspection | Yes | | | Checkbox | Inspect the cooling tower fill, support
structure, sump and spray nozzles | Yes | | | Checkbox | Fill valve, gear box, drive coupling, fan
blades, and motor bearings | Yes | | | Checkbox | Clean starter and cabinet | Yes | | | Checkbox | Inspect wiring; check motor starter
contacts for wear and proper
operation; megger test the motor and
log readings | Yes | Readings: See attached for log readings | | Checkbox | Check the condition of the sump
heater and contactor, and log
observations | Yes | Observations: No
observations, sump heater
in good condition | | Checkbox | Has bearing lubrication for pump been completed at least annually? Inspect couplings and check for leaks. Investigate unusual noises | Yes | | | Checkbox | Has cleaning or replacing air filters of
air handling unit been completed at
least once a month (some may only
need to be changed every 3-6
months)? | No | | Generated with dashpivot.com Printed version is uncontrolled Page 1 of 2 This PDF was created at Friday, 26 April 2019, 11:30:57 am # Air Cleaner Maintenance Schedule | Component | Maintenance Task | Frequency | Performed By | |-----------------------|----------------------------|-------------|-----------------------| | Electrostatic Filter | Cleaning | 1-3 months | Homeowner | | EAC Pre-filter | Cleaning | 1-3 months | Homeowner | | EAC Cells | Cleaning | 1-6 months | Homeowner | | EAC lonizing
Wires | Inspection/Replac
ement | 6-12 months | Homeowner/Tech nician | | EAC Components | Voltage Testing | Annually | Technician | | UV Lamps | Replacement | 9-12 months | Technician | | Complete System | Inspection | Annually | Technician | # **Customer Education Materials** Providing comprehensive educational materials to customers is essential for ensuring proper maintenance and operation of air cleaning systems. These materials should include clear instructions for routine maintenance tasks, safety information, maintenance schedules, and contact information
for professional service. Well-informed customers are more likely to properly maintain their systems, resulting in better air quality and longer equipment life. # Air Cleaning Technology Selection Guide ### **Electrostatic Filters** Best for: Homes with standard HVAC systems seeking moderate filtration with low maintenance costs. These washable filters provide good particle removal without creating significant airflow restriction. Ideal for households with average air quality concerns and those looking to reduce disposable filter waste. ### **Electronic Air Cleaners** Best for: Homes with occupants who have respiratory sensitivities or allergies. EACs provide superior filtration of fine particles including pollen, dust, and smoke. They're ideal for households willing to perform regular maintenance in exchange for excellent air quality. Not recommended for homes where ozone sensitivity is a concern. ### **UV Air Purifiers** Best for: Homes with concerns about biological contaminants such as mold, bacteria, and viruses. UV systems are excellent supplements to other filtration methods but shouldn't be the only air cleaning technology. They're particularly valuable in humid climates where microbial growth is a concern or in homes with immunocompromised occupants. # CSA Unit 23 # Chapter 2 Humidifiers: Installation, Operation, and Service Since the comfort of building occupants depends on both air temperature and relative humidity, the gas technician/fitter should understand humidification. There are many types of humidifiers. The gas technician/fitter must install them carefully so they do not damage the heating and cooling equipment. # Objectives # **Describe Functions** Describe the function of different types of humidifiers and their control # **Installation Procedures** Describe installation procedures for humidifiers # **Operation & Service** Describe operation requirements and service procedures for various types of humidifiers # Key Terminology | Term | Abbreviation (Symbol) | Definition | |-------------------|-----------------------|---| | Hard water | | Water that contains a high mineral content | | Humidifier | | Unit that increases the air's humidity level | | Humidistat | | The basic control for a humidifier | | Psychrometer | | Tests the relative humidity of a conditioned space | | Relative humidity | RH% | Measurement of the percentage amount of water vapour contained in the air compared to the amount that can be contained (100%) when the air is saturated at the same temperature | # Basic Concept of Central Humidifiers 礆 # Water Supply A small water line connected to household plumbing carries water to the humidifying unit # Evaporation Inside the humidifying unit, water evaporates into the passing air ### Distribution The moistened air increases the humidity level throughout the home Where central humidifiers differ is in how the evaporation is accomplished, what happens to any excess water, and what controls are available to regulate the humidification. # Understanding Relative Humidity ### Definition Relative humidity (RH%) is a measurement of the percentage amount of water vapour contained in the air compared to the amount that can be contained (100%) when the air is saturated at the same temperature. # **Key Characteristics** - Changes with temperature as warm air can hold more water than cold air - Is always low in warm desert climates (such as Arizona) - Is low inside in the winter (when the temperature is low outside) in cold climates, such as in much of Canada # Comfort and Relative Humidity # **Effects of Low Humidity** - The room may feel colder than its actual temperature - There may be high levels of static electricity - Building occupants may be more susceptible to colds and other airborne viruses since excessive dryness reduces the effectiveness of the nasal membranes dreamstime.com ID 249428867 © Elena Pimukova A humidifier adds moisture to the air, increasing the relative humidity and the comfort level. In most cases, a relative humidity of 30-50% is most comfortable for building occupants. # **Condensation Concerns** Condensation of water on inside windows in the form of fogging or frost is usually an indication of excessive relative humidity. This condensation can take place in other areas of the building with the possibility of damage from staining, rotting, and mould. | Outside air temperature -
Celsius | Desirable maximum inside RH% | |--------------------------------------|------------------------------| | -7 | 40% | | -12 | 35% | | -18 | 30% | | -24 | 25% | | -29 | 20% | # Types of Humidifiers # By Installation Type - Stand-alone devices - Integrated part of the building's heating and cooling system # By Location - Installed in the furnace plenum - Installed in duct - Attached to the plenum or duct to introduce water vapor into the air stream # **Humidistat Control** Humidistats installed either in the living area or in the cold air return control most humidifiers. The basic control for humidifiers is a humidistat which turns the humidifier on or off according to the humidity level. This is different from a common household thermostat which controls temperature. If the humidifier is connected to a forced-air furnace, it will only work when the furnace blower is operating. However, there may be times when the humidifier should be on, but the furnace is off. # Independent Humidifier Operation # Fan-Equipped Humidifiers Humidifiers that contain their own fans can independently (and thus better) regulate the humidity level. ### Furnace Fan Control You can run the furnace fan constantly in dry periods by adjusting the thermostat fan auto/on switch to the on position. ### **Advanced Humidistats** Humidistats are also available with fan contacts to actuate the fan of a furnace when humidification is required. They may also be able to activate the cooling system for dehumidification. # Types of Humidistat Controls # **Mechanically Controlled** - Contains a strip of moisturesensitive plastic film that elongates as humidity rises - When humidity reaches the preset level, the strip triggers a switch that turns the humidifier off - When humidity falls, the strip shrinks and starts the humidifier - The dial face will often have a scale showing the recommended setting based on outdoor air temperature # **Electronically Controlled** - Contains electrical sensors that vary in resistance as the relative humidity changes - Will have connections for an outdoor temperature sensor - Can detect very small changes in relative humidity # **Humidistat Positioning** ### Importance of Position If the humidistat is not in the right place, the relative humidity will not be measured correctly, and the building may be less comfortable. ### **Recommended Location** The humidistat is normally mounted in the return air duct or an area where air is being controlled. Select a location clear of drafts or excessive humidity. ### Locations to Avoid Avoid mounting near doors or windows, or in bathrooms and kitchens. ### **Convenient Placement** A location near the thermostat is convenient for building occupants. # Nexus Network **CLI Installation Guid** # Manual Humidistat # Features of Mechanical Humidistat The mechanical humidistat will only have one setting, for relative humidity, and the building occupants set the humidistat to the desired relative humidity. This simple control allows users to manually adjust the humidity level based on comfort needs and outdoor temperature conditions. # Digital Humidistat Control # **Electronic Humidistat Settings** The electronically controlled humidistat will typically have a manual and automatic setting: - When on manual setting, it will give the owner direct control of their RH%, the same as a mechanical humidistat - When in automatic mode, if installed with outdoor sensor, the control will automatically adjust RH% to help prevent window condensation # Wetted-Element Humidifiers All wetted-element humidifiers operate on the same principle. An open textured medium, the evaporating surface, is wetted, and the water it contains evaporates into the air. # **Medium Types** The medium may be a fixed pad wetted by a spray or fed by gravity, or it may be dipped into a water reservoir on an electrically-powered paddle, drum, or rotating belt. ### Control Humidistats control wetted-element humidifiers, turning them on when humidity falls below the set point. # **Drum Humidifiers** # Operation Duct-mounted drum humidifiers contain a 24 V AC motor and a wheel or drum covered with foam. When the humidistat calls for humidity, the drum rotates through a water reservoir. This saturates the foam on the drum, which then evaporates into the air passing through the humidifier. The moistened air enters the return air plenum and is distributed throughout the home by the furnace blower. The reservoir contains a float and water valve to automatically control water level and prevent overflows. # Figure 2-3 Drum humidifier for in-duct installation # **Drum Humidifier Components** Foam Drum Water Reservoir Holds water for evaporation Absorbs water from reservoir # **Evaporator-Pad Humidifier** # **Operation Principle** Similar to the drum humidifier, the evaporator-pad humidifier is duct-mounted and is connected between the warm-air supply plenum and the return air supply (also referred to as by-pass type). Air flows from the warm-air supply plenum through a moisture-laden evaporator pad, picking up moisture and returning moist air to the return air supply of the furnace. Figure 2-4 **Evaporator-pad humidifier** Trough cover assembly Water supply Water distribution tubing trough Evaporator-pad Solenoid valve assembly Drain pan Drain tubing # **Evaporator-Pad Humidifier Features** ### Water Distribution The pad is "wetted"
by water controlled through a solenoid valve and distributed over the pad by a distributor trough at the top of the humidifier. ## Water Management Water that does not evaporate drains from the bottom of the humidifier. # **Mounting Requirements** It is important to mount the humidifier level to ensure that the trough delivers water uniformly over the entire top surface of the humidifier pad. ### **Powered Models** Powered models have a built-in fan which allows the unit to circulate humidified air even when the heating system is not in operation. # Spray Humidifiers ## **Humidity Call** When the humidistat calls for humidity, a solenoid is energized and opens a water valve ### Water Flow Water flows through the 24 V AC solenoid valve and open valve # **Spray Action** $Water is \, sprayed \, on \, the \, humidifier \, medium \,$ 4 ### Evaporation From this point, the operation is the same as a drum humidifier # **Atomizing Humidifiers** Atomizing humidifiers introduce small droplets of water directly into either the duct air stream or the conditioned space. ### **Atomization Methods** - Centrifugal force - Spray nozzle - Ultrasonic vibrations # **Important Note** Do not use atomizing humidifiers with hard water. The minerals contained in hard water leave the evaporating water vapour as dust that will be distributed through the building. # Centrifugal Atomizing Humidifiers # **Operating Principle** Centrifugal atomizing humidifiers contain a spinning disc or cone that breaks the water into a mist, or a rotating disc which slings water into the air from a reservoir. This method creates very fine water droplets that can be easily absorbed into the air stream, providing efficient humidification. # Spray-Nozzle Atomizing Humidifiers ### Operation Spray-nozzle atomizing humidifiers have a fine spray nozzle that creates fine droplets and sends them into the duct airstream. The nozzle may use water pressure alone or a mixture of air and water. ## **Installation Types** Atomizing humidifiers are often portable or console-type units, but you can also mount them so that the water will be directed into a ducted central system. # **Important Caution** If they are connected to the ducts, do not use them when the furnace is not operating. If the fan is not running, the moisture they introduce can accumulate and cause corrosion, mildew, and other moisture problems. # **Steam Humidifiers** Since steam is water vapour at high temperature, introducing steam into the airstream is an efficient way to add water vapour to the air. # Self-Contained Type - Converts tap water to steam by electrical energy - Can either be free-standing and unconnected to the duct system or inject steam into the duct system # Inject Type - Inject steam from a boiler into either the space or duct system - Must be placed where the air can absorb the vapour to ensure that condensation does not occur in the ducts ### Benefits - Can deliver significant amount of humidification for large homes or arid climates - Use less water than other types of units # Self-Contained Steam Humidifier # Operation The self-contained unit generates steam by energizing two electrodes that extend into a canister of water. The current flowing between these electrodes causes the water to boil. The steam then flows from the outlet hose and is injected into the moving air stream through a dispersion tube mounted in the ductwork. You can use a separate fan pack for homes without ductwork. # Steam Humidifier Dispersion Tube ### Design Features The design of the dispersion tube incorporates vertical tubelets that distribute the steam over the entire area of the duct and allow any condensed moisture back into the steam hose to drain back to the steam canister. ### **Installation Requirements** You must mount the dispersion tube on the vertical dust surface. The mounting plate will angle the tube upward. The dispersion tube should be higher than the humidifier so the steam hose can be sloped to drain back to the unit. # **Condensation Management** Any condensation that forms on the outer walls of the tubelet is directed back to the system, preventing moisture accumulation in the ducts. # Humidifier Installation Overview # Follow Manufacturer's Instructions Because there are so many types of humidifiers, detailed descriptions of humidifier installation are not provided. Follow the manufacturer's instructions for the specific model and type of humidifier to be installed. ### **Consider Size** Determine the correct size before a humidifier is installed to ensure proper humidification for the space. ### **Correct Location** Position the humidifier according to manufacturer specifications and best practices for the specific type. # **Humidifier Sizing Factors** ### Area Size Size of the area to be humidified (in ft³) # **Building Construction** The construction or "tightness" of the building # **Code Requirements** Code requirements for air changes per hour ### **Climate Factors** Lowest outdoor temperature in the area # **Desired Humidity** Level of relative humidity desired Consult the manufacturers' specifications to ensure that the unit chosen is appropriate for the space to be humidified. # **Humidifier Installation Locations** # Bypass Humidifier Installation # **Bypass Humidifier Function** Humidifiers installed in a bypass location are passive - they do not contain a fan or other method of moving air. Air circulates through the units because of differences in pressure between the warm and cool side of the furnace. You may mount the bypass humidifier on either the supply plenum or duct or the cold air return plenum or duct. The bypass duct must connect the return and supply-side plenum or ducts, wherever you mount the humidifier. # Installation Restrictions ### **Never Exhaust Onto** - Air conditioning coils - Air filters - Electronic air cleaners (EACs) - Blowers - Turns in a duct ### Never Install In - The furnace casing - Above a heat exchanger # **Important Considerations** - Humidifiers should be positioned so if water spills, it will not spill onto electrical components - The humidifier location must allow access for service and maintenance - If a humidifier is used with an EAC, it must be located downstream from the latter to avoid damage to the cleaner # Bypass Humidifier Positioning Figure 2-9 Bypass wetted-element humidifier # **Positioning Procedure** - 1. Select a location for the bypass on the opposite plenum - 2. Select a location that cannot damage the air conditioner A-coil during installation - 3. Select a location where the duct provided is adequate to connect the humidifier to the bypass The sidewalls of humidifiers are interchangeable to allow bypass duct mounting on either side of the humidifier. # Humidifier Positioning Guidelines 1 Avoid Furnace Body Do not locate the humidifier or bypass on a furnace body 2 Allow Clearance Allow adequate clearance in front of and above the humidifier so you can easily remove the cover to perform routine maintenance Maintain Height Mount the humidifier at least 3 inches (78 mm) above the furnace body to allow adequate space for the solenoid valve and drain line 4 Prevent Freezing Mount the humidifier in a conditioned space to prevent freezing ### **Humidistat Location Selection** #### **Select Location** Select a location for the humidistat on the return plenum or on the wall in the living space #### **Consider Ease of Installation** Mounting on the return plenum is the easiest installation for the control wiring circuit #### **Ensure Proper Sensing** For return duct mount, place the humidistat upstream from the humidifier or bypass so that it can properly sense the relative humidity of the living space #### Maintain Distance Locate the control at least 8 inches (203 mm) upstream from the humidifier in the return air duct ### Fan Humidifiers #### Fan Humidifier Features Fan humidifiers, also known as powered or flow-through, use the fan inside the humidifier to pull duct air through the humidifier. Access to only the supply or the return is required, making installation more flexible than bypass models that require connections to both supply and return. #### Fan humidifier # Water Supply Considerations #### Hard Water Problems Hard water -- water that contains a high mineral content -- can cause various problems in humidifiers: - Nozzles, tubes, and evaporative elements may collect precipitated solids and become clogged - Mineral solids that enter the air stream can leave a layer of white dust on furniture and floors throughout the home #### Solutions - You can soften the water supply to the humidifier - This process usually adds sodium to the water - Since the sodium itself precipitates out in humidifier reservoirs over an extended period, make a provision for the reservoir to be flushed out on an ongoing or periodic basis - You can add chemicals that prevent scaling (the precipitation of minerals) to the humidifier pan Consult the manufacturer's literature before adding any chemicals to the humidifier. # Water Supply Connection Methods #### Saddle Valve For copper water tubing systems, a saddle valve often comes with various manufacturers of humidifiers installation packages. Though they are considered "easy to install", this type of connection should not be recommended. The saddle valve is prone to failure and can cause enormous property damage. Note: In Ontario, the Ontario Building Code states that a saddle valve "shall not be installed". #### Recommended Method Install a full-size tee fitting and approved valve on the water line. This provides a more reliable and codecompliant connection. Figure 2-11 Saddle valve # Furnace-Humidifier Electrical Connection # Atomizing Humidifier Requirements Atomizing humidifiers installed in a duct or plenum must operate only when the furnace blower is operating. If the air is not moving, the drops will fall on the duct surface, causing moisture accumulation, which can encourage mildew
growth and cause corrosion. #### **Electrical Interlock** To ensure the atomizing humidifier works only when the blower is operating, an electrical interlock is required. This is accomplished by installing a sail switch in the return air duct that closes electrical contacts when air is moving. #### **Evaporative Humidifiers** Evaporative humidifiers (wetted-element) may operate independently of the furnace, so no interlock is required. ### **Transformer Wiring Guidelines** #### Separate Transformer The humidifier must not be connected to the transformer on the furnace, if there is one, since this could overload the furnace transformer. #### Avoid Thermostat Circuit The humidifier transformer should not be wired into the thermostat circuit. If it is, the thermostat would receive a different current draw depending on whether the humidistat was calling for moisture. #### Direct Drive Motor Protection If a humidifier transformer is installed on a furnace with a direct drive motor, the wiring and control system must prevent the humidifier transformer from overvoltage created by the motor's idle windings. #### Follow Diagrams Follow all manufacturer's wiring diagrams for proper installation. ### **Sheet Metal and Drain Considerations** #### **Sheet Metal Modifications** When a humidifier is installed in or under a duct, in a plenum, or in a bypass duct, make modifications to the sheet metal. Follow the manufacturer's instructions for the specific humidifier concerning the size of the openings required and proper sealing of openings. #### **Drain Requirements** Ideally, all the water flowing into the humidifying unit would evaporate, but in reality, most systems end up with leftover water. The usual solution is to provide a drain tube, but this means that the humidifier must have access to a drain pipe. Some designs retain and recycle the incoming water until it all evaporates, but the trade-off for this approach is that you can't use the reduction in fresh water to carry away any mineral deposits that prevent potential mould buildup. ### **Operation and Service Overview** #### Seasonal Inspection Check the operation of the humidifier when inspecting the forced-air furnace prior to the start of the heating season. #### Cleaning Importance It is especially important to be sure that the humidifier is clean before the heating season starts. #### **Health Concerns** If water remains in a humidifier for an extended period (for example, over the summer), it may become a breeding environment for fungi, bacteria, algae, and viruses. If the reservoir is not cleaned before the furnace blower is turned on, these contaminants can be distributed throughout the house, lowering indoor air quality. ### **Common Operation Requirements** Check factors such as water level, mechanical operation, and humidistat function. The guidelines for operation given here are general. Check the manufacturer's specifications for specific operation requirements. | Factor | Description | |---|--| | Water level correct | If the water level in the reservoir is too high, water can overflow into ducts, ultimately causing corrosion and/or development of mildew. The water level must be set to the manufacturer's specifications. | | Float valve assembly operating | The float valve assembly must be working and adjusted properly to maintain the correct water level. | | Humidistat working | To check the operation of the humidistat, having an independent measure of the relative humidity in the building is necessary. A sling psychrometer can provide this confirmation. | | Clean overflow/drain line and reservoir pan | You may need to remove the hose for cleaning. Check to be sure the drain is not blocked. Clean the reservoir pan at the beginning and end of the heating season, or more frequently if the pan seems slimy. Ensure that the customer understands how to clean the humidifier according to manufacturer's instructions. | ## Service Guidelines for Different Humidifier Types #### Wetted-Element Humidifiers - If the wetted element is mounted on a drum or paddle, the drum or paddle must turn for the humidifier to operate correctly - Clean or replace the media in wetted-element humidifiers at the beginning of every season - You must keep the humidifier pad clean to permit proper absorption and evaporation of water - If the media is a cleanable type, you can wash it with detergent - You can scrape mineral (scale) deposits loose, lightly with a putty knife, if necessary - Replace the humidifier pad if it will no longer conform to the drum properly after cleaning #### Other Humidifier Types - Atomizing humidifiers: The nozzle must be spraying freely or the drum turning - Steam humidifiers: - Steam generation must be occurring, and the nozzle must not be blocked - Inspect steam hose to ensure it has no low spots and has constant upward slope from humidifier to dispersion tube - If dispersion tube is mounted below the humidifier, inspect the drip tee drain and trap - Check for loose electrical connections on the canister ## Servicing Wetted-Element Spray Humidifiers #### **Turn Off Humidistat** Begin by turning the humidistat off #### Clean or Replace Media If replacing, install the media diagonally into the cabinet so you can see the nozzle from the front opening #### **Prepare for Testing** Turn on the water supply, open the damper to the humidifier, and turn on the furnace blower #### **Test Operation** Set the humidistat so it calls for humidity - the solenoid water valve should open #### **Check Spray Pattern** Check the nozzle spray - if the spray is uneven or irregular, replace the nozzle #### **Complete Service** Replace the filter medium in the normal position # Servicing Drum-Type Humidifiers #### Clean Clutch Assembly Clean mineral deposits from the clutch assembly using detergent or by scraping scale (mineral deposits) using a putty knife #### Clean Components Clean the drain pan and the orifice between the water source and the float valve #### **Test Operation** Turn on the furnace blower and set the humidistat so it calls for humidity - the motor should rotate #### **Adjust Water Level** Adjust water level screw to manufacturer specifications ### **Customer Maintenance Instructions** | Season | Maintenance | |--------|--| | Fall | If the humidifier contains a media pad, clean it before the heating season begins If there is a reservoir, clean it with vinegar and water If the humidifier is a bypass type, open the bypass duct damper Check the float level and adjust it as necessary Set the humidistat to the desired relative humidity, approximately 40% | | Winter | Check the windows of the building for condensation, a sign of excess humidity, and adjust the humidifier as necessary Check the level of water in the humidifier periodically | | Summer | Drain the humidifier reservoirClose a bypass duct damper, if there is one | # Troubleshooting Humidity Issues #### When Customer Reports Lack of Humidity - Check the relative humidity in the conditioned space using a sling psychrometer - Troubleshoot the humidifier, especially the: - Humidistat - Water supply - Electrical system #### Important Note In extreme weather conditions, few humidifiers can provide the desired humidity level. # **Testing Relative Humidity** #### Sling Psychrometer The sling psychrometer measures air temperature using two thermometers, a wet bulb, and a dry bulb mounted on a base. The apparatus has a handle that allows it to rotate rapidly in the air. As the psychrometer moves, air flows over the thermometers. Moisture evaporates from the wet bulb. When the temperature stabilizes on the two thermometers, readings are taken and compared to tables provided with the device to find the relative humidity based on the two temperatures. ## Modern Humidity Measurement Devices #### **Electronic Humidity Measurement** Modern electronic devices use the following to measure humidity changes, allowing a gas technician/fitter to measure relative humidity without a sling action: - Temperature of condensation - Changes in electrical resistance - Changes in electrical capacitance #### Digital Psychrometer A digital psychrometer is an example of modern electronic device that is now available for quick and accurate humidity measurements. ### Troubleshooting the Humidistat #### **Testing Response** When testing relative humidity, set the humidistat for a higher level to see if it activates. #### Calibration Issues If the humidistat is functioning and the relative humidity in the conditioned space is not what it is calling for, the humidistat may be incorrectly calibrated. It may be possible to recalibrate the humidistat, or it may need replacement. #### **Outdoor Sensor Problems** If the outdoor temperature reading is not accurate: - Check the connection to the outdoor temperature sensor - Check the location and mounting of the sensor - Check the resistance of the sensor and compare to the manufacturer's temperature/resistance table ### **Troubleshooting Water Supply Issues** #### **Supply Line** Make sure the supply line has not become plugged and that the float valve is adjusted
properly, so an optimum level of water is maintained in the reservoir. #### Float Valve If the float is damaged, you can replace it. If the humidifier overflows, and the level/float setting is correct, the seat on the entire float assembly may need replacement. #### **Wetted Element** If the humidifier is based on a wetted element, make sure the medium is not clogged, dirty, or saturated with mineral deposits. Clean or replace it if necessary. #### **Atomizing Components** In an atomizing humidifier, make sure the drum is turning properly and the spray nozzle is not blocked. #### E SAFETY INSTRUCTIONS AND INSTALLATION TEMPLATE BEFORE STARTING #### ATTENTION INSTALLER: nstalled by a qualified heating and air conditioning contractor. Failure to do so could result in serious injury This product must be installed in compliance with all local, state and federal codes. n and humidity control also requires that the home be constructed in accordance with local codes and goo ### **Aprilaire** Model 500 Series Humidifier #### HAZARD ver to the stallation. cal shock. RD. Sharp injury from ing plenum ictwork. Water an cause ply before into any #### **CAUTION** #### RISK OF PROPERTY AND EQUIPMENT DAMAGE. - . Do not install humidifier where freezing temperatures could occur. The water line could freeze and crack causing water damage to the home - 2. Do not install humidifier or bypass connection on the - Do not install humidifier or bypass connection on a plenum face where the blanked off ends of the cooling coil will restrict air movement through the humidifier. - recommended level if condensation exists on inside windows of any unheated space, as condensation damage may result. Excess humidity can cause moisture accumulation which can allow the possibility - 5. Do not connect Model 500 or 500M transformer to blower motor wiring. Premature component - 6. When installing Humidifier Control on downflow furnace, ensure blower continues to run after a - 7. Do not install humidifier where water pressure exceeds 125 psi, since damage to the humidifier may result. Follow codes in effect concerning - 8. Do not install humidifier on systems with greater than 0.4 in. wg pressure differential between supply and return plenums INST The Me is eas #### RECOMMENDED WIRING DIAGRAMS RODUCTS CORPORATION • P.O. BOX 1467 • MADISON, WI 53701-1467 • CALL 800/334-6011 • FAX 608/257-4357 ## **Troubleshooting Electrical** Connections #### No Function If the humidifier is not functioning at all, the problem may be electrical. Check circuit breakers, the humidistat, and low-voltage controls if there are any. #### Motor Issues If the humidifier has a motor—as some atomizing and wetted element types do - check it to see if it is burned out. #### **Mineral Deposits** Mineral deposits may cause a humidifier to switch itself off. If a component is locked or bound because of a mineral buildup, in some humidifiers, a thermal fault overload protector may open, shutting the unit off. In this case, clean or replace the component. ### Other Potential Problems | Potential Problem | Description | |-----------------------|--| | Dust | If excessive dust is caused by a humidifier, the dust will be white since the cause is mineral buildup. Clean or replace the media. | | Moisture in the ducts | Moisture may be found in the ducts if an atomizing humidifier is installed, and the humidifier is operating when the furnace blower is not. The atomizing humidifier must operate only when the furnace blower is on and the furnace is operating. Check to be sure it is not operating when the "fan only" mode is selected since heat is required to evaporate the water droplets created by the atomizing humidifier. | | Water overflow | The float valve may need cleaning, replacement, or adjustment if water has overflowed. Check the drainage/overflow line in case it has become blocked. | ### **Humidifier Types Comparison** # Humidifier Installation Safety Checklist 1 Water Safety Ensure all water connections are secure and properly sealed to prevent leaks that could damage the HVAC system or home #### **Electrical Safety** Verify all electrical connections are properly insulated and follow local electrical codes #### **Proper Positioning** Confirm the humidifier is positioned where water cannot spill onto electrical components #### Drainage Ensure drain lines are properly installed with appropriate slope to prevent water backup #### Service Access Verify there is adequate clearance for maintenance and service of all components | 10-20°F | 35% | |---------|-----| | 0-10°F | 30% | | -10-0°F | 25% | # Recommended Humidity Levels by Season 30-40% 40-50% 45-55% Winter Humidity Recommended indoor humidity during cold winter months Spring/Fall Humidity Ideal humidity during moderate temperature seasons **Summer Humidity** Comfortable indoor humidity during warm summer months Maintaining proper humidity levels throughout the year helps ensure comfort, protect home furnishings, and reduce static electricity. During winter, lower humidity levels help prevent condensation on windows and within walls. # Benefits of Proper Humidification #### **Health Benefits** Proper humidity reduces respiratory issues and helps prevent dry skin, eyes, and nasal passages #### **Home Protection** Prevents wood furniture, flooring, and musical instruments from cracking or warping #### Comfort Properly humidified air feels warmer, potentially allowing lower thermostat settings #### **Energy Savings** Humid air feels warmer, potentially reducing heating costs by 4-5% ### **Humidifier Selection Guide** Selecting the right humidifier involves understanding your home's specific needs. Start by calculating the volume of space to be humidified, then consider your local climate conditions. Choose a humidifier type that balances efficiency with your maintenance preferences and budget constraints. Finally, plan the installation location carefully to ensure optimal performance. # Future Trends in Humidification Technology #### **Smart Connectivity** Integration with home automation systems and smartphone control allows for remote monitoring and adjustment of humidity levels #### **Energy Efficiency** Advanced designs minimize water and electricity usage while maximizing humidity output #### Multi-Zone Sensing Multiple humidity sensors throughout the home provide more accurate control of humidity levels in different areas #### **Water Conservation** Improved water management systems reduce waste and increase efficiency ### Summary: Humidifier Installation and Maintenance Proper humidifier installation and maintenance are essential for optimal performance and longevity. By following manufacturer guidelines and performing regular service, technicians can ensure that humidifiers provide comfortable, healthy indoor environments while protecting the HVAC system from potential damage. ### CSA Unit 23 # Chapter 3 Cooling Coils Refrigeration and air conditioning mechanics, not gas technicians/fitters, perform the installation and major servicing of cooling coils in conjunction with gas-fired forced-air furnaces. However, the gas technician/fitter must inspect and clean the cooling coil as part of regular furnace servicing. # Purpose and Objectives #### Purpose Refrigeration and air conditioning mechanics, not gas technicians/fitters, perform the installation and major servicing of cooling coils in conjunction with gas-fired forced-air furnaces. However, the gas technician/fitter must inspect and clean the cooling coil as part of regular furnace servicing. #### Objectives At the end of this chapter, you will be able to: describe how to check cooling coils for proper function and to clean cooling coils. # Terminology | Abbreviation (Symbol) | Definition | |-------------------------------------|--| | Normal air temperature rise or drop | The difference between supply air temperature and return air temperature | ### **Checking and Cleaning Cooling Coils** Adding a cooling coil to a forced air furnace adapts it for use as a central air conditioner. Although air conditioning technicians perform the installation and servicing of the air conditioning unit, as a gas technician/fitter, you must clean the cooling coil as part of regular furnace maintenance. A dirty coil, like a dirty furnace filter, restricts air flow. #### **Cooling Coil** Also known as an "A" coil because of its shape, it may be attached to the supply plenum or in a cabinet between the supply plenum and the duct. #### Condenser Usually located outside the building, it works with the cooling coil to circulate refrigerant. ## Condenser ### How Cooling Systems Work #### **Compressor Operation** The compressor moves the refrigerant around the loop. #### **Heat Absorption** As the furnace forces air through the "A" coil, the coil absorbs heat from the air, causing the liquid refrigerant to change to the vapour state. #### **Heat Removal** The refrigerant vapour moves to the condenser coil where heat is removed to the outdoors, causing the vaporous refrigerant to return to a liquid state. #### **Cycle Completion** The liquid refrigerant returns to the cooling coil. # **Types of Cooling Coil Units** **Up-flow furnaces** Cooling coils designed specifically for upward airflow systems. Down-flow furnaces Cooling coils designed specifically for downward airflow systems. Horizontal furnaces Cooling coils designed specifically for horizontal airflow systems. The coil is housed in a cabinet. # **Cooling Coil Locations**
Figure 3-3 shows possible locations of the cooling coil cabinet. The liquid used as a coolant varies depending on the specific unit. #### **Cabinet Placement** The cooling coil cabinet can be placed in various locations depending on the furnace type and installation requirements. #### **Coolant Variation** Different cooling systems may use different types of refrigerant depending on the manufacturer specifications and environmental regulations. # Measuring Temperature Change #### **Create Access Points** Punch or drill a hole in the supply and return air plenums. Where possible the holes should be about three feet from the furnace. #### **Insert Thermometers** Place a thermometer into the air flow through each of the holes. Most good quality electronic multimeters have a temperature probe accessory or a pocket digital thermometer that works. #### Operate and Measure Operate the equipment for about five minutes, with the fan running to establish the normal air temperature rise or drop, which is the difference between supply air temperature and return air temperature. # Temperature Calculation Methods | To calculate temperature | Then | |--------------------------------|--| | Drop across the coil | Subtract the supply side temperature from the return side temperature. | | Rise across the heat exchanger | Subtract the return side temperature from the supply side temperature. | ## Diagnosing Temperature Change ## Importance of Coil Cleanliness The surfaces of the cooling coil must be clean. ## **Reduced Cooling Capacity** During the cooling season, the coil will not deliver its full cooling capacity. #### **Restricted Air Flow** Air flow to the building will be reduced. #### **Increased Temperature** During the heating season, both temperature rise across the furnace and stack temperature will increase. #### Regular Inspection The coil will require visual checking for cleanliness when the furnace is cleaned. # Accessing the Cooling Coil | If the coil is | Then | |-----------------------|---| | Located in a cabinet | An access door is provided. | | Mounted in the plenum | It may be necessary to cut an inspection port. Be careful to not damage the coil if you cut a port. | ## Cleaning the Cooling Coil: Overview The cooling coil requires cleaning when it is dirty. For the gas technician/fitter, this involves cleaning the: #### **Exterior Cleaning** Cleaning the exterior of the coil itself to ensure proper heat transfer. #### Fin Cleaning Cleaning the fins through which air is forced over the coil to maintain proper airflow. # Cleaning Procedure: Fin Inspection #### **Check Fins** Check the fins for accumulated dirt or dust. ## Clean If Necessary If the fins are clogged or dirty, clean with a vacuum cleaner, compressed air or nitrogen, brush or a fin comb. #### **Use Caution** Use the vacuum, brush, or comb carefully to not damage the coil. # Cleaning Procedure: Tubing Inspection ### **Inspect Connections** Inspect the tubing and connections for signs of oil leaks. #### **Identify Leaks** Spots of oil indicate a leak that the air conditioning technician must repair. #### Clean Surfaces Brush or clean outer surfaces of the lines with a vacuum cleaner. #### Wash If Needed If necessary, you can wash them with low-pressure water and mild detergent. # Cleaning Procedure: Condensate System ### **Check Drain System** Check and clean the condensate drain system. ## Clean Drip Tray Clean the drip tray of accumulated dust or dirt. #### Clear Drain Hole Probe the drain hole with a screwdriver to be sure it is not clogged. ## Test Drainage Pour a small amount of water in the drip tray and watch to ensure it drains properly. ### Clear Clogs Blow out with compressed air or nitrogen if clogged. # Digital Thermometers Most good quality electronic multimeters have a temperature probe accessory or a pocket digital thermometer that works for measuring temperature changes in HVAC systems. ### **Precision Measurement** Digital thermometers provide accurate temperature readings essential for proper HVAC diagnostics. ## Portability Pocket-sized digital thermometers are convenient for field technicians to carry and use. #### Versatility Many digital thermometers can be used for multiple applications beyond HVAC work. ## Refrigerant Vapour Compression Cycle # 7 -Compression The compressor moves the refrigerant around the loop. 111 礆 Return 3 The liquid refrigerant returns to the cooling coil. #### **Heat Absorption** As the furnace forces air through the "A" coil, the coil absorbs heat from the air, causing the liquid refrigerant to change to the vapour state. #### Condensation The refrigerant vapour moves to the condenser coil where heat is removed to the outdoors, causing the vaporous refrigerant to return to a liquid state. # **Typical Cooling Coil** A cooling coil (sometimes called an "A" coil because of its shape) is a critical component in air conditioning systems that work with forced-air furnaces. #### **Design Purpose** The A-shaped design maximizes surface area for heat exchange while fitting within the constraints of typical HVAC systems. #### **Installation Location** May be attached to the supply plenum or in a cabinet between the supply plenum and the duct. #### Maintenance Responsibility While installation is performed by refrigeration technicians, regular cleaning is the responsibility of gas technicians during furnace maintenance. ## Temperature Measurement Process #### **Creating Access Points** Punch or drill holes in the supply and return air plenums, ideally about three feet from the furnace, to allow for temperature measurement. #### **Inserting Measurement Tools** Place thermometers or temperature probes into the airflow through each of the access holes to get accurate readings. #### **Taking Readings** After operating the equipment for about five minutes with the fan running, record the temperatures to calculate the normal air temperature rise or drop. ## **Cooling Coil Cabinet Locations** Figure 3-3 shows possible locations of the cooling coil cabinet in different furnace configurations. Figure 3-3 Possible locations of the cooling coil cabinet Courtesy of WGisol CC BY ## **Temperature Change Diagnostics** 11°C #### Normal Temperature Drop The typical temperature drop across a properly functioning cooling coil at 24°C and 50% humidity 20°F #### Fahrenheit Equivalent The same temperature drop expressed in Fahrenheit units 24°C #### **Typical Operating Temperature** The standard ambient temperature for measuring cooling coil performance 50% #### **Relative Humidity** The standard humidity level for measuring cooling coil performance # Problems Caused by Dirty Coils #### **Reduced Cooling Capacity** During the cooling season, the coil will not deliver its full cooling capacity. #### **Restricted Air Flow** Air flow to the building will be reduced. #### **Increased Temperature** During the heating season, both temperature rise across the furnace and stack temperature will increase. # Cleaning Tools and Methods Various tools can be used to clean cooling coils, including vacuum cleaners, compressed air or nitrogen, brushes, and fin combs. For more stubborn dirt, low-pressure water with mild detergent may be used. Always use these tools carefully to avoid damaging the delicate fins and coil structure. # Condensate Drain System Maintenance **Drip Tray** Cleaning Drain Hole Inspectio n Drainage **Testing** Clearing Blockages Clean the drip tray of accumulated dust or dirt to prevent blockages and ensure proper drainage. Probe the drain hole with a screwdriver to be sure it is not clogged and water can flow freely. Pour a small amount of water in the drip tray and watch to ensure it drains properly without air or backing up. If the drain is clogged, use compressed nitrogen to blow out the obstruction and restore proper flow.